学术动态
当前位置: 学院首页 > 学术动态 > 正文

达索系统SIMULIA优化技术总监Claus Pedersen博士学术讲座

发布时间:2018-04-12 点击数:

达索系统SIMULIA优化技术总监Claus Pedersen博士学术讲座

应西安交通大学先进制造技术研究所邀请,达索系统SIMULIA优化技术总监Claus Pedersen博士来我校进行学术交流,欢迎各位感兴趣的同学和老师参加。

讲座题目:Additive Manufacturing Designing and Process Simulation增材制造设计和工艺仿真

讲座学者:Claus Pedersen博士,达索系统SIMULIA优化技术总监

讲座时间:2018年4月20日(星期五)9:00

讲座地点:机械制造系统工程国家重点实验室 西安交通大学曲江校区西五楼A420

讲座学者介绍:

Claus Pedersen博士是达索系统SIMULIA研发CTO办公室的优化技术总监。他负责制定研发战略、开发和审查基于创新优化方法的技术、CAE和优化内核编程、竞争情报、技术尽职调查、同国际顶尖大学进行核心优化技术指导和知识分享。在加入达索系统之前,他于2002年获得丹麦技术大学机械工程系的博士学位并在英国剑桥大学工程系工作。Claus Pedersen博士并且是2017年10月4日发表在自然杂志上对波音777机翼进行仿生式结构设计优化论文的审稿人,该篇论文获得学术界和工业界的广泛关注。

Dr. Claus Pedersen is Optimization Technology Director at the CTO Office of R&D SIMULIA, Dassault Systèmes. His roles include defining R&D strategies, inventing and examining the technology of new optimization methodologies, coding of CAE and optimization kernels, competitive intelligence, technical due diligence, coaching and knowledge sharing for core optimization technologies and corporations with leading international universities. Prior joining DS, he received his Ph.D. at Department of Mechanical Engineering of Technical University of Denmark in 2002 and worked at Department of Engineering, Cambridge University, UK.

讲座摘要

此次报告将集中展现最新的工业级仿真解决方案和工作流用于解决增材制造中的工艺问题模拟和采用结构拓扑、尺寸优化的设计技术。基于真实的仿真技术可以考虑诸如工艺装配中的预载荷,螺栓连接的刚度和接触等问题开展面向增材制造的结构优化,并考虑特殊的工艺问题如打印支撑约束对于拓扑优化的影响。基于通用热应力有限元求解器开发高度定制化的仿真架构,来减少增材制造中多种工艺方法在实际制造中的试错过程,更好保证增材零件满足安装公差、产品性能和耐久性等要求。报告将介绍在航空航天、汽车和耐用消费品等行业的应用案例和仿真试验验证工作。

The present presentation shows the latest industrial simulation solutions and workflows applied for Additive Manufacturing (AM) process simulation and designing with a special focus on structural topology and sizing optimization. Realistic simulation including pre-loading of the assemble process, stiffness of the bolt connections and contacts are included for realistic AM optimization results. An AM constraint for topology optimization is considered in the form of an overhanging constraint. Additionally, a highly customizable general simulation framework is proposed for a wide spectrum of AM processes based on a general thermal-stress general purpose finite element code for eliminating trial-and-error manufacturing adjustments as well as ensuring that produced AM parts meet tolerance, performance and durability requirements. Several industrial applications and benchmarks from the aerospace, automotive and consumer goods industry will be shown.

\

\

图片来源于论文

Niels Aage, Erik Andreassen, Boyan S. Lazarov & Ole Sigmund, Technical University of Denmark

Giga-voxel computational morphogenesis forstructural design

NATURE RESEARCH LETTER doi:10.1038/nature23911

地址:陕西省西安市咸宁西路28号 邮编:710049
           版权所有:西安交通大学机械学院     站点维护: 网络信息中心 陕ICP备06008037号